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1.  Introduction 

A number of Investigations of crack problems in nonhomogeneous media 

have been undertaken in which the elastic moduli vary continuously with 

spatial coordinates.  In all of these studies special forms of 

inhomogeneities have been assumed in order to insure a tractable problem 

for which the asymptotic form of the stress field near the crack tip could 

be calculated.  One of the primary objectives of these works was to 

determine the effect of spatial inhomogeneity upon the known singular field 

quantities associated with the corresponding homogeneous problem. 

In the case of a Mode I crack embedded in a nonhomogeneous medium, 

symmetric about the plane of the crack, specific models of inhomogeneities 

examined thus far show the usual square root singular crack tip stress 

field associated with the homogeneous medium occurs for the nonhomogeneous 

problem provided the shear modulus does not vanish in the plane of the 

crack.  (see, e.g. Delale and Erdogan (1983), Gerasoulis and Srlvastav 

(1980), Schovanec (1986), and Schovanec and Walton.) 

Studies of a Mode III crack located on the Interface of two bonded 

materials have shown that the assumption of spatial inhomogeneity in either 

component part does not alter the known square root singular behavior 

present in the piecewise homogeneous bimaterial problem.  One of the more 

general models utilized, which includes the homogeneous and bimaterial 

mediums as special cases, was investigated by Delale (1985) who took the 

+ 
± ax+3 y 

shear modulus in the form li(x,y) = P e       with the crack situated in 

the plane y=0  and y , 3 (u ,3 )  constants specified in the half plane 

y>0 (y<0).  (See also Clements, et al. (1978) and Dhaliwal and Singh 

(1978).) 



In the situation that the crack tip terminates at a bimaterial 

interface between two homogeneous mediums it is known that the stress field 

—Y 
singularity is of the form r  , 0 < Y < 1,  where  r  is the distance from 

the crack tip.  (Erdogan and Cook (1972)).  As discussed by Atkinson (1977) 

such a result is unsatisfactory from a fracture mechanics point of view in 

that it results in a stress intensity factor and energy release rate of 

zero or infinity.  To alleviate this inadequacy in the 'ideal' interface 

model Atkinson introduced a nonhomogeneous layer at the interface in which 

the shear modulus varied continuously, matching the constant values at the 

two outer mediums.  For the specific forms of the modulus considered it was 

-1/2 then shown that the stress at the crack tip displayed an r 

singularity.  Assuming that the elastic module could be expanded in a 

Taylor series about r=0,  Atkinson suggested that the square root behavior 

would always result.  The antiplane shear crack perpendicular to an 

interface was also considered by Erdogan (1985).  To investigate the effect 

of a continuous but nondifferentiable elastic modulus at the interface, a 

+ 
g~x +  - 

shear modulus of the form y(x) = lJ_e    was assumed with 3 (3 ) 

corresponding to x>0 (x<n).  The main focus of that study was to show that 

for such a model a square root singularity at the crack tip resulted. 

Erdogan proposed that the same conclusion should be valid for any 

continuous but nondifferentiable modulus P(x). 

This note addresses the conjecture raised in the two previous studies. 

Without assuming any particular form of the shear modulus, only that it be 

continuous throughout the medium and differentiable everywhere except along 

a curve at which the crack tip terminates, it is shown that a square root 



singular stress field is present at the crack tip.  As will be clear from 

the subsequent analysis, the situation in which the crack, lies along this 

interface at which the modulus is nondifferentiable is handled in the same 

manner, so that in such cases the same square root behavior occurs.  This 

note does not address the general question of existence of solutions for 

such a class of boundary value problems.  Rather, the approach taken here 

is to show that when there exists a physically meaningful solution, a 

notion to be made precise later, then that solution exhibits a square root 

singular stress field. , 

2.  The Boundary value problem. 

The specific problem considered here is that of an infinite 

nonhomogeneous isotropic elastic solid containing a semi-infinite mode III 

crack terminating along a curve  C  corresponding to the interface of two 

bonded materials.  Referred to cartesian coordinates  x,y,z,  the crack is 

assumed to be in the plane y=0, x<0  and the nonzero component of 

displacement (i)(x,y)  is related to the nonzero components of stress by 

o   = y8a)/3x, o       = p9(D/9y where the shear modulus y(x,y)  is assumed 

to be continuous throughout the medium and differentiable everywhere but 

along  C.  The primary case to keep in mind is when the crack is 

perpendicular to the interface in which case C  corresponds to  x=0.  If 

the modulus is symmetric about the plane of the crack then the particular 

boundary value problem to be solved is 

div(yV(jo) =0     |x|<~, y>0 

y(x,0) — (x,0) = S(x)    x<0 
By 

to(x,0) = 0    x>0. 



The existence of a solution with locally finite strain energy, i.e., 

/„(y/2)  Vuj   dA < " where ^  is any bounded measurable subset of the 
ill I 

upper half-plane, will be assumed.  Note that a sufficient condition to 

insure w  have locally finite strain energy is that near the crack tip, 

II      —Y Vo)  = 0(r  ), 0 _< Y < 1.  The point here is to show Y = 1/2.  A growth 

condition on o)  of the form /     log x ((VyVa))/y)(x) dx < "  for  R>0 
Ix >R 

Is also assumed.  For a large class of moduli, (e.g.,  y(x) = (ctx+P)   as 

considered in Atkinson (1977)) this condition is satisfied if 

II       — 1 —£ Vo)  = 0(r    ), r"*"",  which, is indeed the case if the applied tractions 

are statically self-equilibrating (Cook and Erdogan (1977)).  Again it 

should be mentioned that the question of determining conditions on the 

applied traction S(x)  and the curve  C which assure the existence of 

such a solution oo  is not taken up here. 

Define the Green's function by 

r(r,s;x,y) = ^ log /[(r-x)^ + (s-y)^] [(r-x)^ + (s+y)^"] + ^(v,s;x,y) 

where 

8 2^,  8 2^ 

2 "^ —2 " °'   rP"' ^^^ 
8r   3s 

^(r,0) = :^ log[(r-x)2 + y2]    r>0 (1) 

|i (r,0) = 0 r<0. (2) 

Applying Green's second identity 



9v2     9v, 

in each Tnedium determined by the interface  C with v, = ^,  v„ = T,  and 

recalling that the displacements are continuous at  C  while the normal 

tractions across C cancel, there results the representation formula 

"^(x.y) = -/" r r(s,r;x,y) C^^]   (r,s) dsdv +/  r(r,0;x,y) ^^^^  dr. 
_flo Q ^ _oo M V r, u ^ 

With the above assumptions on w  the first integral exists and the 

subsequent expressions to be derived from it are also well defined. 

Seek the harmonic function ^     in the form 

iKr,s;x,y) = |- /" f(t;x,y)  1 j dt. 
(t-r)^ + s^ 

Since 

3'!^ /  n    X   1 r~ 9f ,^    s dt ^ (r,0;s,y) = - J^^ ^ (t;x,y) -^-^ , 

inversion of this relation and use of (2) and (1) gives 

and 

-?f (r;x.y) = i r ^ (t.O;x.y) ^,   --<r<<. 

(3) 

(4) 

-^II|)   =r^(t,n;x.y)^.   r>0. (5) 
(r-x)^+y^   0   ^ ^  ^ 

Methods for solving (5) are well known and it can be shown that 

^* /-. A   N   -1  f°° (u-x) /u du 

Ti vT 0  (u-x) +y 



Substitution of (6) into (4), an interchange in the order of integration 

and the observation that for u>0, r<0 

leads to 

dt r_L   
0 ^- (u-t)(t-r)   ^j-^u- 

1 

3f /     .      1   f°° /u (u-x)  du 

TrVfFf 0  (u-x) +7"" 
r<0. 

An In'-.egration by parts gives 

3f Ji (r;x,y) = -^i  /" —IHIL)   log[ (u-x)2+y2] du,   r<0. (7) 
4TiV-fFf 0 /u (u-r)^ 

At this point it is convenient to observe that if (7) is differentiated 

with respect to y and then integrated with respect to r, keeping in 

mind that  f(*,x,y)  must vanish at infinity, then one has for  r<0. 

'  1  1 /"irT 

9V (r;x.o) = 
IT /x X-3 

0 

x>0 

x<0 
(8) 

In order to illustrate the singular nature of the stress field and to 

determine the stress intensity factor, only  9a3/3y (x,0)  is required.  The 

method of computing a   is carried out in the same manner. 

3.  The stress singularity and the SIF. 

From the definition of  F, (1),  and the representation of w  given 

by (3), one has that 

^ (x.O) lim ir r ir || (t;x.y) 
y+0 -"    0 (t-r)  +s 

dt}   (^)(r.s)  dsd. 

(9) 



1 w 

+ -/ IT J 

y     s(r)  j  ^ r ^f /    \  s(r) 
 ^"^^ dr + J  -5— (r;x,y)  , '^ 

00 ^y        M(r,0) ir '  ,   ,2^ 2 li(r,0) 
-°° (r-x) +y   ^   ■>   ' 

dr} . 

Making use of (8) It easily follows that the limit of the single integrals 

in (9) is given by 

s(x) 
y(x,0) 

0 i   1/    /-TFT £LLldr_ 
TT j-  J^  I''' u(r) r-> 

^  Vx -" 

x<0 

x>0. 

(10) 

By utilising (8) and (1) it can he shown in a similar manner that the limit 

of the triple integral in (9) is 

TT ■'.. 1 ^ ,   ,2  2   TT /- •'__ x-t .        .2  2 °^J 
VyVo) 

2  2 
0   (x-r) +s /~    no  X-t vx -"^ 

2  2 
(t-r)^+s^ 

dsdr,   x>0 

(11) 
x<0. 

Combining (10) and (11) it follows that for  x>0, 

yz^ ' -^     ^f  ■'  ^  ^ 2—2 —i]  
^ -"0  (x-r) +s 

dsdr + 

(12) 

y(x,0) 1"°° r°° rO / |t| s    Vp< 

TT/X   -" 0  -" ^"^  (t-r)^+s^ 
lZ!i dtdsdr + iil2L^ /O /iTT ^(^> ^ 
^ W-  ico  ' ' l'(r.O) r-> 

From (12) the square root singular behavior is apparent and in the case 

that  y  is constant, the known result for the homogeneous medium (Willis 

(1967)), 

yz TT/X -"     .        ^ ^ 

is easily recovered.  Since a square root singularity is always present at 

the crack tip, the stress intensity factor may be defined as 



K = lim y(x,n) /x -g— (x,0)  and from (12) one has 
x*0 ^ 

"^0 r rO   1   s(r)      r~ r~f»   1     s    Vu'Vu) ,_ ,  i 
K = — i J   —3 TrrToT '*''■'  •' •'  , 2—2 "~1I  dtdsdr j . 

As pointed out above, the calculation of o is carried out in a 

similar manner and by changing to polar coordinates it is not difficult to 

show that in general o..(r,e) = o( —J, r->-0.  Finally it should be noted 
^^ /r 

that a similar derivation can be carried out for finite domains.  In this 

case the appropriate boundary conditions must be prescribed and the 

analogous Green's function computed.  The growth condition imposed on u 

however would no longer be necessary. 
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